Probabilistic analysis of NDT signals for modeling the uncertainty of NDT&E

Noritaka Yusa Graduate School of Engineering, Tohoku University, Japan

Personal profile

- Name: Noritaka YUSA
 - Affiliation & Position:

Professor,

Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University, Japan

- Professional experiences:
 - 2020-Present Professor, Tohoku University
 - 2009-2020: Associate Professor, Tohoku University
 - 2006–2009: Project Assistant Professor, The University of Tokyo (concurrent)
 - 2005-2006: Assistant Professor, Keio University (concurrent)
 - 2001–2009: Researcher/Director, IIU Corp.
 - 2001: Researcher, Japan Society of Applied Electromagnetics and Mechanics

Education:

- 2004: Doctor of Engineering, Department of Quantum Engineering and System Science, Graduate School of Engineering, The University of Tokyo
- 2000: Master of Engineering, Department of Quantum Engineering and System Science, Graduate School of Engineering, The University of Tokyo
- 1998: Bachelor of Engineering, Department of Quantum Engineering and System Science, Faculty of Engineering, The University of Tokyo

Personal profile

- Name: Noritaka YUSA
 - Affiliation & Position:

Professor,

Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University, Japan Professional experiences:

- 2020-Present Professor, Tohoku University
- 200<u>9-2020: Associate Professor, Tohoku University</u>
- : ²⁰⁰₂₀₀ Department of Nuclear Engineering
- 2001-2009: Kesearcher/Director, no Corp.
- 2001: Researcher, Japan Society of Applied Electromagnetics and Mechanics

Education:

- 2004: Doctor of Engineering, Department of Quantum Engineering and System Science, Graduate School of Engineering, The University of Tokyo
- 2000: Master of Engineering, Department of Quantum Engineering and System Science, Graduate School of Engineering, The University of Tokyo
- 1998: Bachelor of Engineering, Department of Quantum Engineering and System Science, Faculty of Engineering, The University of Tokyo

Personal profile

- Name: Noritaka YUSA
 - Affiliation & Position:

Professor,

Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University, Japan Professional experiences:

- 2020-Present Professor, Tohoku University
 - Research interests:
 - Development of NDT&E techniques mainly for, but not limited to, large-scale structures such as power plants.
 - Designing a system to transmute high level radioactive waste using high-energy neutrons.
 - Energy and environmental education, especially from the viewpoint of the public acceptance of nuclear power.

 System Science, Graduate School of Engineering, The University of Tokyo
 1998: Bachelor of Engineering, Department of Quantum Engineering and System Science, Faculty of Engineering, The University of Tokyo

Some of specific researches NDT&E using DC~GHz electromagnetic fields

Low frequency eddy current NDT for the evaluation of corrosion of double-layered structures (Nondestr. Test. Eval. 33 (2018), 189–197)

Development of an arrayed eddy current probe and its application to on-line monitoring of fatigue cracks (NDT&E Int. 61 (2014), 127-132)

Long-range inspection of pipe wall thinning using microwave (NDT&E Int 96 (2018), 45-57, etc.)

Form maintenance's viewpoint

Assigning resources properly is one of the most important issues for assuring the safety of largescale structures. Detecting a tiny flaw is not always welcomed.

■ Uncertainty of detection →Probability of detection

Uncertainty of evaluation
Interval estimation

Probability of detection (POD)

TOHOKU

We should detect what we must detect.

Probability of detection (POD)

How to construct POD in conventional models

- A flaw is characterized just one parameter, *a* (flaw size).
- Many signals are necessary (huge resource to prepare samples).
- Signals should have "constant variance."

Our basic approach

- Finding a proper mathematical model to correlate flaw profiles and signals;
 - Using not a simple linear regression but a more reasonable model based on physics.
- Combinational use of numerical simulation and experiments;
 - Evaluating non-polluted signals by simulations, and uncertainty by experiments.
- Monte-Carlo simulation for evaluating complicated joint probability distributions;
 - Enabling taking consideration of the effects of various factors.

<u>Simulation+Experiment</u>

Eddy current inspection of a surface breaking crack

Combinational use of simulations and experiments:

Measured signal Normal distribution Simulated signal
$$V(d,l) = N(\mu_1,\sigma_1^2) \times V^{Sim}(d,l) + N(\mu_2,\sigma_2^2)$$

crack depth crack length

Normal distribution

Log-likelihood function to estimate the four parameters:

$$\ln L = \sum_{i=1}^{M_l} \ln \Phi \left(\frac{V_l - (\mu_1 V^{sim}(d_i, l_i) + \mu_2)}{\sqrt{V^{sim}(d_i, l_i)^2 \sigma_1^2 + \sigma_2^2}} \right) \\ - \frac{1}{2} \sum_{i=M_l+1}^{M-Mr} \left[\ln \{ 2\pi \left(V^{sim}(d_i, l_i)^2 \sigma_1^2 + \sigma_2^2 \right) \} + \frac{\{V_i - (\mu_1 V^{sim}(d_i, l_i) + \mu_2)\}^2}{V^{sim}(d_i, l_i)^2 \sigma_1^2 + \sigma_2^2} \right] + \sum_{i=M-M_r+1}^{M} \ln \left(1 - \Phi \left(\frac{V_r - (\mu_1 V^{sim}(d_i, l_i) + \mu_2)}{\sqrt{V^{sim}(d_i, l_i)^2 \sigma_1^2 + \sigma_2^2}} \right) \right)$$

POD as a function of the depth and length:

$$POD(d, l) = \Phi\left(\frac{\left(\mu_1 V^{sim}(d, l) + \mu_2\right) - V_{th}}{\sqrt{V^{sim}(d, l)^2 \sigma_1^2 + \sigma_2^2}}\right)$$

NDT&E Int. 81 (2016), 1-8. etc.

<u>Simulation+Experiment</u>

Eddy current inspection of a surface breaking crack

ACADEMIA NDT International 2021/10/24

Effect of the distance between two scanning lines on the probability of detection of ECT against a crack

Artificial fatigue crack (38 cracks prepared)

- 1. Evaluating V(*d*), the distribution of signal due to a flaw with a depth of *d*.
- 2. Evaluating F(x), the effect of positional deviation on the decrease in V(d).
- 3. Evaluating not $P(V(d) > V_{th})$ but $P(F(x)V(d) > V_{th})$ on the assumption $x \sim U(-0.5s, 0.5s)$.

IJAEM 64(2020), 11-18

1. Evaluating V(*d*), the distribution of signal due to a flaw with a depth of *d*.

- 2. Evaluating F(x), the effect of positional deviation on the decrease in V(*d*).
- 3. Evaluating not $P(V(d) > V_{th})$ but $P(F(x)V(d) > V_{th})$ on the assumption $x \sim U(-0.5s, 0.5s)$.

IJAEM 64(2020), 11-18

2. Evaluating F(x), the effect of positional deviation on the decrease in V(d).

3. Evaluating not $P(V(d) > V_{th})$ but $P(F(x)V(d) > V_{th})$ on the assumption $x \sim U(-0.5s, 0.5s)$.

IJAEM 64(2020), 11–18

Effect of the distance between two scanning lines on the probability of detection of ECT against a crack

given
$$d \longrightarrow FWHM \longrightarrow F(x)V(d)$$

given $s \rightarrow x = U(-\frac{s}{2}, \frac{s}{2}) \longrightarrow F(x)$

then, count the number of trials satisfying $F(x)V(d) \ge V_{th}$ by Monte-Carlo simulation

with a depth of *d*.

- 2. Evaluating F(x), the effect of positional deviation on the decrease in V(d).
- 3. Evaluating not $P(V(d) > V_{th})$ but $P(F(x)V(d) > V_{th})$ on the assumption $x \sim U(-0.5s, 0.5s)$.

IJAEM 64(2020), 11-18

Effect of the distance between two scanning lines on the probability of detection of ECT against a crack

Effect of the distance between two scanning lines on the probability of detection of ECT against a crack

<u>Summary</u>

- Quantifying the uncertainty of NDT&E is an important issue especially for optimizing the maintenance of large-scale structures.
- POD is a well-known, and well-established, method for quantifying the detection uncertainty. However, there are many challenges in its application.
- Quantifying evaluation uncertainty (not like ±4.4mm, but more quantitatively) is yet quite challenging.