

Potential of TeraHertz Radiation in NDT

			Uwe EWERT			
World Conference of	on Non Destructive	Testing		uwe.ev	vert@bam.de	
Zerzikkonigatiste Poliatio und Ehorake ableutor ad alo gas de Terfakreg	April 2012	THz – Radiation for ND	T 1 Ewert	et al.	BAM	

Outline

- Introduction to THz radiation
- Some Security applications
- "Pulse Echo" technique- Replacement of UT?
 - 3D measurement of structures and flaws by time of flight technique
 - Applications
 - Time of Flight Diffraction (ToFD)
 - Comparison to UT Pulse echo technique
 - Synthetic aperture focusing technique (SAFT)
- Single beam Computed Tomography Replacement of RT?
 - 3D reconstruction of a test phantom
- Summary

Nov. 2011

Properties of mm-waves und THz-radiation:

- frequency range: mm-waves: 30...300 GHz, THz-waves: 0.3 ...6 (...) THz
- **non-ionising radiation** as compared to X-ray etc.
- penetrate opaque materials as clothing, wraps, polymers with minor attenuation.
- reflected at the skin surface; potential for body scanner.

Passive THz-Bodyscanner

VIS- and THz-Video, distance 8m, 10fps; objects: 65g tataric acid, ceramic knife, handoun mockup (Al)

Detection of body radiation

April 2012

THz – Radiation for NDT 4

Inspection with mm Waves

THz – Radiation for NDT 5

Passive 42 GHz Image of a Truck

Image with

April 2012

THz Inspection of Liquids

HANDHELD

Security at airports

THz-System Group; Prof. Dr. M. Koch, Universität Marburg

Bundesministerium für Bildung und Forschung

(FKZ 13N9514)

April 2012

THz – Radiation for NDT 7

BAM THz-TD Spectrometer

Picometrix T-Ray 2000 fiber coupled THz-TDS System => highly flexible integrated Huber two circle goniometer => angle dependent measurements

THz – Radiation for NDT 8

THz-TD Spectroscopy

Application areas

Patrogand Sharaktegisternat Slogioche Ferfahreg

April 2012

	Penetration	Reflection	Volumetric	Surface
Metals	no	interfaces	no	yes
Plastics (low DK)	high	interfaces	yes	yes
Plastics (high DK)	medium	interfaces	limited	yes
Plastic on metals (low DK)	high	interfaces	yes	yes
Glass fiber composites	medium	interfaces	limited	yes
Carbon fiber composites unidirectional	Medium, polarized radiation	interfaces	limited	yes
Carbon fiber composites multidirectional	no	interfaces	no	yes
Human Skin, water	low	interfaces	low	yes

THz – Radiation for NDT 9

HBAM

Ultrasonic Pulse Echo Technique

THz pulse and "echos"

UT Pulse echo device

by K. Balasubramaniam, IIT, Chennai

THz – Radiation for NDT 10

Topographic 3D Imaging

of Polymer Structures Above a Metal Plate

Optically Focused PE Technique

(normal incidence)

Width

Length

THz – 3D Image of i-POD with **Plexiglas window**

 T_x R_x S

BS

= beam splitter

Ewers, Kupsch, Hentschel, Lange, WCNDT 2008

= transmitter

= receiver

= sample

= lens

THz – Radiation for NDT 11 April 2012

Measurement of Different Surface Coatings

Measurement of Polymer Thickness above Metal Mesh

Identification of GFRP Delaminations

photos of sample:

mm-wave/THz reflectivity at internal layer:

Clear identification of delaminations is possible

THz – Radiation for NDT 14

SynViewScan Mobil: Field study in Japan

THz inspection of earthquake damages in walls

THz – Radiation for NDT 15

Investigation of an AIN-Coolingbox (High Power Electronics)

C-Scan with Time of Flight of a soldering layer, Comparison to X-Ray-CT

Delamination and Water Intrusion Construction Example

Weather Radome

Radome Panel With Water Intrusion

Water intrusion into composite laminate panel degrades radar performance. Current solution: Tap Testing

Aerospace applications

Picometrix T-Ray 4000®

Space Shuttle: ET tank foam NDE; Orbiter TPS Tiles-hidden corrosion detection; Next Gen Orion and Ares Applications: NASA

Radar dome delamination and water intrusion;

F35 Intake Specialty Coating thickness measurement

19

Aeroturbine Thermal Barrier Coating measurement

Comparison to UT - ToFD

Internal Defect for UT - ToFD Measurement

TOFD B-Scan

Measurement of Phase Contrast by THz-SAFT

THz vs. UT PE - Sample #2

Pulse Echo Techniques: THz vs. UT

Edison Cristofani, Marijke Vandewal

SA NDT System

THz Simulation of Hole Phantom # 2

hole phantom

SAFT reconstruction

c)

Rotation angle (0° - 360°)

THz – Radiation for NDT 26

Measurements vs. Simulation

- Matching of simulated and measured data at given lens size .
- Additional echoes need further investigation.

April 2012

THz – Radiation for NDT 27

Reconstruction of Hole Phantom # 2 by Synthetic Aperture Focusing Technique

Influence of Lens Sizes

T-ray CT: Experimental Set-Up

...in the focus

Our sample

Ewers, Kupsch, Hentschel, Lange, WCNDT 2008

THz – Radiation for NDT 30

Ewert et al.

Focussed beam Technique

T-ray CT: Experimental Results

- reconstruction by standard algorithm (filtered backprojection)
- assumption: ideal parallel beam
- neglecting non-linear effects
- y slices reconstruced separately
- •isosurface algorithm for 3D imaging

Ewers, Kupsch, Hentschel, Lange, WCNDT 2008

THz – Radiation for NDT 31

Conclusion

- THz radiation is explored as replacement for RT and UT volumetric inspection of non-metallic materials.
- THz measurements are contactless and do not need any coupling medium in contrast to UT and do not require radiation protection in contrast to RT.
- THz CT was performed in radiographic penetration mode
 - The classic CT set up with a single beam and rotation translation technique was successfully tested for volumetric 3D inspection.

• THz CT in UT pulse echo mode

- The Time of Flight technique (ToF) was used in analogy to UT inspection.
- A topographic 2D scan was combined with time of flight measurements for reconstruction of a 3D surface image (phase contrast) in front of a metal plate.
- Time domain THz measurements can be performed similar to the UT Pulse echo technique and be interpreted correspondingly.
- Several applications were shown.
- THz pulse echo measurements with SAFT provide phase contrast in analogy to UT SAFT, but THz visualizes also multi phase geometries.

Acknowledgement

Durban, April 17th, 2012, WCNDT

- L. von Chrzanowski BAM Berlin
- D. Fratzscher BAM Berlin
- J. Beckmann BAM Berlin
- G. Brekow BAM Berlin
- D. Brackrock BAM Berlin
- A. Kupsch BAM Berlin
- M. Hentschel BAM Berlin
- B. Ewers BAM Berlin

- D. Zimdars Picometrix
- S. Becker Photonik, SynView
- T. Hakkarainen VTT
- E. Cristofani, Royal Military Academy, Belgium
- M. Vandewal, Royal Military Academy, Belgium

uwe.ewert@bam.de http://www.bam.de

